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The flow of cells through curved vessels is often encountered in various biomedical and bioengineering
applications, such as red blood cells (RBCs) passing through the curved arteries in circulation, and cells
sorting through a shear-induced migration in a curved channels. Most of past numerical studies focused
on the cell deformation in small straight microvessels, or on the flow pattern in large curved vessels with-
out considering the cell deformation. However, there have been few attempts to study the cell deforma-
tion and the associated flow pattern in a curved microvessel. In this work, a particle-based method,
smoothed dissipative particle dynamics (SDPD), is used to simulate the motion and deformation of a
RBC in a curved microvessel of diameter comparable to the RBC diameter. The emphasis is on the effects
of the curvature, the type and the size of the curved microvessel on the RBC deformation and the flow
pattern. The simulation results show that a small curved shape of the microvessel has negligible effect
on the RBC behavior and the flow pattern which are similar to those in a straight microvessel. When
the microvessel is high in curvature, the secondary flow comes into being with a pair of Dean vortices,
and the velocity profile of the primary flow is skewed toward the inner wall of the microvessel. The
RBC also loses the axisymmetric deformation, and it is stretched first and then shrinks when passing
through the curved part of the microvessel with the large curvature. It is also found that a pair of
Dean vortices arise only under the condition of De > 1 (De is the Dean number, a ratio of centrifugal to
viscous competition). The Dean vortices are more easily observed in the larger or more curved microves-
sels. Finally, it is observed that the velocity profile of primary flow is skewed toward the inner wall of
curved microvessel, i.e., the fluid close to the inner wall flows faster than that close to the outer wall.
This is contrary to the common sense in large curved vessels. This velocity skewness was found to depend
on the curvature of the microvessel, as well as the viscous and inertial forces.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The flow of cells through curved vessels is often encountered in
various biomedical and bioengineering applications, such as RBCs
passing through the curved arteries in circulation, and cells sorting
by shear-induced migration in a curved channels. It is broadly
accepted in biomedical community that the curved shape of the
vessel may play a critical role in the development of some diseases,
for example, atherosclerosis particularly prevalent on the inner
wall of curved arteries (Lee et al., 2008). In bioengineering applica-
tions, the curved flow effects may lead to cross-streamline cells’
migration, which has been explored in sorting and manipulating
cells, like the spiral bio-chip for the enrichment or separation of
circulating tumor cells (CTCs) (Hou et al., 2013; Warkiani et al.,
2014a,b, 2016).

Most of the previous numerical studies on flows of RBCs focused
on cells’ motion (Lac et al., 2004; Sui et al., 2008; Hosseini and
Feng, 2009; Noguchi, 2009; Bagchi and Kalluri, 2009; Noguchi,
2010; Ye et al., 2010, 2014b; Yazdani and Bagchi, 2011; Bagchi
and Kalluri, 2011), their deformation (Dao et al., 2003; Fedosov
et al., 2010; Ye et al., 2013), aggregation (Liu et al., 2004; Bagchi
et al., 2005; Zhang et al., 2008; Li et al., 2014) and rheology
(Pries et al., 1992; Bagchi, 2007; Doddi and Bagchi, 2009; Zhang,
2011; Xu et al., 2013; Ye et al., 2014a). The microvessel is often
assumed straight and uniformly-sized rectangular or cylindrical
tubes. The flow generated is either shear or Poiseuille flow, by
moving the microvessel wall or by applying an external force to
fluid; and then the RBCs behavior is studied. It has been reported
that, roughly speaking, there are three typical motions of a RBC
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in simple shear flow: tank-treading, trembling and tumbling
motions for the steady, transition and unsteady states, respectively
(Sui et al., 2008; Noguchi, 2009; Yazdani and Bagchi, 2011; Dupire
et al., 2012; Luo et al., 2013; Lanotte et al., 2016), and two typical
motions in Poiseuille flow: symmetric motion with parachute
deformation and asymmetric motion with slipper deformation
(Pozrikidis, 2005; Kaoui et al., 2009; Tahiri et al., 2013). There have
also been many numerical studies (Bagchi et al., 2005; Liu and Liu,
2006; Zhang et al., 2008, 2009; Doddi and Bagchi, 2009; Wang
et al., 2009; Gong et al., 2009; Takagi et al., 2009; McWhirter
et al., 2009; Noguchi et al., 2010; McWhirter et al., 2011;
Fedosov et al., 2013; Xu et al., 2014) on the aggregation and disso-
ciation of RBCs in shear and Poiseuille flows, as well as their effects
on the blood rheological properties. These studies are mainly moti-
vated by some diseases found in blood microcirculation, such as
sickle cell anemia and thrombus, and often assume a straight ves-
sel. On the other hand, the human vasculature is a complex net-
work with curved and bifurcated vessels. One of the first curved
vessels encountered by blood on its exit from the heart is the aortic
arch. This curved shape enables the blood ejected from the heart to
reverse and move in a caudal direction toward the body, which, in
turn, affects the forces acting on the inner lining of the vessels, pos-
sibly leading to arterial diseases (Chandran et al., 2007). Hence, the
aortic arch is the subject in most past studies on curved vessels
(Shahcheraghi et al., 2002; Morris et al., 2005; Vincent et al.,
2011; Konoura et al., 2013; Nardi and Avrahami, 2017). The main
difference suggested from these studies between straight and
curved vessels is that the latter may cause a development of a sec-
ondary flow as well as a skewness in the primary flow velocity pro-
file. Such flow pattern may be one of the major reasons for the
occurrence of arterial diseases. In addition, curved tubes have also
been used to design microfluidic chips based on the associated
curved flow patterns, which can be utilized to sort and manipulate
cells (Hou et al., 2013; Warkiani et al., 2014a,b, 2016). The chip is
usually designed to be relatively large for a high throughput, i.e.,
high efficiency in cell manipulation. Thus, one can find that the size
of the curved vessel in most past studies is relatively large, about
100 lm even to 1 cm in diameter, in the flow simulation in aortic
arch or in a microfluidic chip. In such curved vessels, the cell defor-
mation has not been taken into account. Hence, a valuable consid-
Fig. 1. Problem description, (a) schematic illustration of a cell moving through a micr
(circles), type-1 boundary particles (diamonds), type-2 boundary particles (triangles) an
eration is what can happen if cells pass through a curved capillary
with a diameter comparable to a cell diameter, where the cell
deformation must be considered. More recently, Bagchi’s group
(Vahidkhah et al., 2016; Balogh and Bagchi, 2017) used the
immersed boundary method (IBM) to study the cellular-scale
blood flow in complex geometry, including the stenosed and bifur-
cated microvessels, and even the microvascular network rendered
from an in vivo image.

This work aims to numerically investigate the motion and
deformation of a RBC in a curved microvessel using the SDPD
method. Particularly, we focus on the effects of curvatures, the
types and sizes of the curved microvessel on the RBC deformation
and the associated flow pattern.

2. Models and methods

We consider the motion of a RBC along the centerline of a
curved microvessel, with a length L, a circular cross section of
radius Rv and a height Hc (from the centerline to the baseline), as
illustrated in Fig. 1(a). The RBC’s interior is filled with cytoplasm
fluid, and suspended in the medium fluid. It is assumed that both
fluids are incompressible and Newtonian, and the flow is isother-
mal. Furthermore, it is assumed that they have the same density
and viscosity, which is one of shortcomings of the present work.
The previous studies (Ye et al., 2014b) have shown that the cells
may move slower and its deformation will be smaller if consider-
ing the contrasts of density and viscosity. Therefore, the motion
of the fluids in the interior, and exterior of the RBC is governed by

r � v ¼ 0; ð1Þ

q
dv
dt

¼ �rP þ gr2v þ qg þ f ; ð2Þ

where q; g; v and P are the density, viscosity, velocity and pressure
of fluid, t is the time, and g is the gravity that drives the fluid flow; f
is the singular force generated when treating the fluid-RBC interac-
tion using the IBM (Peskin, 2002), where the RBC membrane is trea-
ted as a surface boundary immersed in the fluid, and it is given by

f ðx; tÞ ¼
Z
C
Fdðr; s; tÞd x� Xðr; s; tÞð Þdrds; ð3Þ
ovessel, (b) particle representation of simulation domain, including fluid particles
d membrane particles (squares).
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dX
dt

¼
Z
X
vðx; tÞd x� Xðr; s; tÞð Þdx; ð4Þ
where C is the closed surface of the RBC membrane, X is the spatial
domain of simulation, ðr; sÞ is the curvilinear coordinate to define a
point on the RBC membrane, X is the spatial coordinate of the RBC
membrane, x is a spatial coordinate of fluid, Fd is the force density
(per unit area) acting on an area of the RBC membrane, and d is the
Delta Dirac function. An additional equation of state (EOS) relating
pressure to density is required to close the Eqs. (1)–(4). Following
Fig. 2. The shape evolution of an RBC in a microvessel of heights, Hc ¼ 0 (a), 5 (b), 10 (
t ¼ 0 ms with an interval of 0:62 ms.
previous studies (Morris et al., 1997, 2000), we here adopt an EOS
with the simple form

P ¼ qc2; ð5Þ

where c is the artificial sound speed. It is chosen appropriately,
enough large to ensure that the simulating fluid has a similar com-
pressibility to a real fluid, yet not so large to make the time step
prohibitively small.

The SDPD method (Español and Revenga, 2003) is applied to
numerically discretize the Eqs. (1)–(5). The fluid interior and exte-
c), 20 (d) and 50 lm (e), respectively. Snapshots, from left to right, are taken from



Fig. 3. The asphericity of an RBC in the microvessel with different heights Hc .

Fig. 4. Velocity distribution on the cross-section normal to the centerline, extracted at the microvessel summit, including contours of the axial velocity (with unit of mm=s) at
Hc ¼ 0 (a) and 50 lm (c), vectors of the radial velocity at Hc ¼ 0 (b) and 50 lm (d), and profiles of axial velocity at the different heights Hc (e). The solid point is the center of
cross-section, and the dash line is rv ¼ 0 lm, served as a reference point and a reference line, respectively.
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rior of the RBC are represented by a set of discrete particles, as
shown in Fig. 1(b), and each of particle associates with physical
properties, such as mass, velocity and density. Based on the SDPD
formulation (Español and Revenga, 2003), we can write the fluid
governing equations as

dxi
dt

¼ v i; ð6Þ

m
dv i

dt
¼

X
j

aijxij � cij v ij þ ðeij � v ijÞeij
� �þ ðAij=dtÞddW ij � eij

h i
þmgi þ f i; ð7Þ

the IBM formulations as

f i ¼
X
k

bikFk;
dXk

dt
¼

X
i

bikv i; ð8Þ
and the EOS as

Pi ¼ mdic2: ð9Þ
The detailed expressions of each coefficient can be found in

Supplementary Material. These equations from (6)–(9) are numer-
ically solved by the velocity-Verlet algorithm (Groot and Warren,
1997), due to its high computational efficiency.

3. Results and discussions

3.1. Simulation conditions

We here describe the simulation conditions for a benchmarking
case, where the tube size is L ¼ 100 lm; Rv ¼ 5 lm and
Hc ¼ 10 lm, and the RBC is described by Evans and Fung (1972)



Fig. 5. Shape evolution of RBC in the arch (a), ripple (b), spiral (c) and U-bend (d), where the snapshots of the RBC are taken,from the inlet to outlet, from t ¼ 0 ms with an
interval of 0:62 ms.
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z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 þ y2

R2

s
C0 þ C1

x2 þ y2

R2 þ C2
ðx2 þ y2Þ2

R4

" #
; ð10Þ

with the parameters R ¼ 3:91 lm; C0 ¼ 0:81 lm; C1 ¼ 7:83 lm and
C2 ¼ �4:39 lm. The surface area and volume of this RBC are
135 lm2 and 94 lm3. The fluid has the following physical proper-
ties: density q ¼ 103 kg=m3, viscosity g ¼ 10�4 Pa s, and Boltzmann
temperature kBT ¼ 4:14� 10�21 J. The RBC has the following
mechanical properties: shear modulus Es ¼ 6:0� 10�6 N=m, and
bending modulus Eb ¼ 2:0� 10�19 J, which are very close to exper-
imental values (Hochmuth, 1987). To drive the system, an external
force g is applied to the fluid, with the magnitude of 320 m=s2 and
assumed to be along the centerline of microvessel. The initial parti-
cle density is d ¼ 15:625 lm�3, the artificial sound speed is
c ¼ 0:1 m=s, and the time step is Dt ¼ 0:124 ls. In the absence of
the RBC, the fluid flow generated has the maximum velocity of
about 0.02 m/s. The Reynolds number Re ¼ qumDv=g � 1:0, and
the Mach number Ma ¼ um=c � 0:1, where um is the mean velocity
and Dv is the microvessel diameter. Note that both Re and Ma are
much larger than the values in reality for saving the computational
cost. This telescoped trick is often used in most of CFD methods for
making the numerical simulation possible. The previous studies
have shown that Re has a slight effect on the cell behavior under
Re < 10 (Ye et al., 2017), and Ca has a negligible effect under
Ca < 0:3 (Vázquez-Quesada et al., 2009). To evaluate the RBC
deformation, moreover, we introduce a measure, called the
asphericity defined as (Noguchi and Gompper, 2005)

s ¼ 1
2
ðI1 � I2Þ2 þ ðI2 � I3Þ2 þ ðI3 � I1Þ2

ðI1 þ I2 þ I3Þ2
; ð11Þ

where I1; I2 and I3 are the principal moments of inertia; note that
this measure approaches zero when the RBC becomes more and
more spherical.

3.2. Curvatures of the microvessel

Fig. 2 shows the shape evolution of a RBC in the microvessel,
with Hc ¼ 0; 5; 10; 20 and 50 lm, respectively. The RBC deforms
gradually into a domed shape. At Hc ¼ 0 lm, the RBC deformation
is axisymmetric, and this is maintained at Hc ¼ 5 and 10 lm. At
Hc ¼ 20 and 50 lm, the RBC deformation is no longer axisymmet-
ric, with the asymmetric deformation becomes more pronounced
in the course of the RBC’s motion through the curve microvessel.
Fig. 3 shows the RBC’s asphericity, which is almost same at
Hc ¼ 0; 5 and 10 lm, but different at Hc ¼ 20 and 50 lm. This indi-
cates that a mild curvature, at Hc ¼ 5 and 10 lm, has almost no
effect on the RBC deformation, but a larger curvature, at Hc ¼ 20
and 50 lm, certainly affects the RBC deformation. Especially at
Hc ¼ 50 lm, the RBC asphericity first increases and then decreases,
suggesting that the RBC is first stretched and then shrinks, when
flowing through the summit of a curved microvessel. This change
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of asphericity is here called a ‘‘unimodal” change for a clear
description. Thus, the RBC has a unimodal change of asphericity
when flowing through the summit of a curved microvessel, as
shown in Fig. 3. The information of the RBC motion can be found
in Supplementary Material.

In a flow through a curved microvessel, secondary flow arises
because of the radial pressure gradient driving the fluid in the
cross-section to move radially (Sollier et al., 2009). Fig. 4 shows
the velocity distribution on the cross-section extracted at the
microvessel summit. At Hc ¼ 0 lm, the axial velocity is axisym-
metric, with its maximum value at the centerline. A similar axial
velocity profile is obtained at Hc ¼ 5; 10 and 20 lm. At
Hc ¼ 50 lm, however, the axial velocity is no longer axisymmetric,
and its maximum value is skewed toward the inner wall. In other
words, the fluid close to the inner wall flows faster than that close
to the outer wall. This is in contrast to the common sense in large
curved vessels that the fluid close to the outer wall usually flows
faster. Sun et al. (2013) attributed this velocity skewness to the
balance between viscous and inertial competitions (Sun et al.,
2013), characterized by the Re number. They explained that the
surface area of the inner wall is smaller than the outer wall, and
thus the fluid experiences less friction force from the inner wall
than from the outer wall. With low Re, the viscous force (friction
force) dominates the flow because of weak inertial effect, giving
rise to a higher flow velocity near the inner wall, as shown in
Fig. 4(c). As Re increases beyond a critical value, inertial effects
dominate the flow, and thus the flow near the outer wall is stron-
ger that near the inner wall. Sun et al. (2013) observed that the
axial velocity is skewed to the inner wall at Re < 17:16, and to
the outer wall at Re > 52:45. In our work, Re � 1:0, with the axial
velocity skewed toward the inner wall. In most cases, however,
Re > 100, and thus the axial velocity is skewed toward the outer
wall. In order to quantitatively analyze it, we plot its profiles along
the vertical centerline on the cross-section at the microvessel sum-
Fig. 6. Asphericities of RBC in the arch, ripple, spiral and U-bend microvessel
mit, i.e. x ¼ 0 and y ¼ 0, as shown in Fig. 4(e). At Hc ¼ 0; 5; 10 and
20 lm, the axial velocity are almost same and symmetric, implying
that the axial velocity is almost axisymmetric. Hence, the curved
microvessel in these cases has negligible effect on the flow pattern.
The axial velocity at Hc ¼ 50 lm is not symmetric with respect to
rv ¼ 0, and its maximum value is achieved below rv ¼ 0. This indi-
cates that the fluid near the inner wall flows faster than that near
the outer wall. A dimensionless number, called Dean number De,
can be used to identify the effect of curvature on the flow structure.
It is defined as De ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv=Rc

p
(Helin et al., 2009), where Rc is here

the minimum curvature radius of the microvessel centerline. It
describes the relative importance of centrifugal to viscous force.
Our cases of Hc ¼ 0; 5; 10; 20 and 50 lm correspond to
De ¼ 0; 0:272; 0:385; 0:544 and 1.033, respectively. When
De ¼ 0, there is no centrifugal effect, and thus no secondary flow
is developed, as shown in Fig. 4(b). With increasing De (but
De < 1), the centrifugal effect becomes stronger and stronger, yet
not so strong to overcome the viscous force, and thus no secondary
flow is observed. Until De > 1, the centrifugal effect plays a domi-
nant role, i.e., the pressure near the inner wall is sufficiently larger
than that near the outer wall (Sollier et al., 2009) generating a
radial pressure gradient that drives a secondary flow. A pair of
symmetrically swirling secondary vortices arise on the cross-
section, so-called Dean vortices, as shown in Fig. 4(d).
3.3. Types of microvessels

Fig. 5 shows the shape evolution of RBC in the arch, ripple, spiral
and U-bend microvessels. These microvessels are generated by
sweeping a circle with the radius of Rv ¼ 5 lm along the centerline
in a pre-defined manner. It is obvious that the RBC deforms
non-axisymmetric in these microvessels, especially at the position
with the largest curvature. The conclusion drawn in the previous
section shows that the fluid near the inner wall flows faster than
s, where the insets are to show the positions with the largest curvature.
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that near the outer wall, at low Re, such that the part of RBC near
the inner wall is pushed forward faster than the part near the outer
wall. Hence, the RBC is stretched more at its position in the large
curvature region, but less so at its position in the small curvature
region. This leads to the unimodal variation of RBC asphericity at
the position with the largest curvature, noted in Fig. 6. This is main
feature of RBC deformation in a curved microvessel. The informa-
tion of the RBC motion can be found in Supplementary Material.
In addition, it is noted that the minimum radius of curvature is
Rc ¼ 33:78; 8:432; 5:596 and 3:065 lm for the arch, ripple, spiral
and U-bend microvessels, and thus De ¼ 0:385; 0:770; 0:945 and
1.192. Hence, the Dean vortices will be expected in the U-bend
microvessel only, as shown in Fig. 7. There are two obvious Dean
vortices emerging, and the maximum axial velocity is skewed
toward the inner wall. Fig. 7(c) shows the profile of axial velocity
on the cross-section extracted at the position with the largest cur-
vature in each microvessel. It is almost axisymmetric with respect
to rv ¼ 0 lm in the arch, ripple and spiral microvessels. This
reflects the fact that the centrifugal force is insufficient to over-
come the viscous force. In the U-bend microvessel, the axial veloc-
ity is no longer axisymmetric and skewed toward the inner wall,
Fig. 7. Velocity distribution on the cross-section at the position with the largest curv
microvessel (a), vectors of the radial velocity in the U-bend microvessel (b), and profiles o
of cross-section, and the dash line is rv ¼ 0 lm, served as a reference point and a refere
and the secondary flow is observed with the typical Dean vortices.
This indicates that the centrifugal force is enhanced and exceeds
the viscous force once De > 1, leading to the secondary flow.

3.4. Sizes of the microvessel

Fig. 8 shows the shape evolution of a RBC in a microvessel of dif-
ferent diameter values. Because the flow is driven by the same
external force g, the axial velocity increases as the diameter
increases. This results in the RBC to be transported further in the
larger microvessel during the same time interval. The deformation
of RBC is also presented, as shown in Fig. 9. As Dv ¼ 8 lm, the RBC
moves to the summit of microvessel at about t ¼ 7:2 ms, and thus
its asphericity undergoes a unimodal change. At t ¼ 13:6 ms, the
RBC exits from the outlet and subsequently is placed back at the
inlet, because we adopt the periodic boundary condition on the
outlet and inlet. During this transition, the RBC actually goes
through two neighboring curved parts, such that there should be
two unimodal changes of the RBC asphericity. However, the rela-
tive curvatures (Rv=Rc) near the inlet and outlet are small because
of the small Rv , and thus these two unimodal changes are not
ature, including contours of the axial velocity (with unit of mm=s) in the U-bend
f axial velocity in the different types of microvessels (c). The solid point is the center
nce line, respectively.



Fig. 8. Shape evolution of RBC in the arch microvessel, with different diameters, Dv ¼ 8 (a), 10 (b), 12 (c) and 15 lm (d), where the snapshots of RBC from the inlet to outlet
are taken from t ¼ 0 ms with an interval of 0:62 ms.

Fig. 9. Asphericities of RBC in the arch microvessels with the different diameters Dv .
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Fig. 10. Velocity distribution on the cross-section extracted at the summit of arch microvessel, including profiles of axial velocity at the different diameters Dv (a), contours of
the axial velocity (with unit of mm=s) at Dv ¼ 15 lm (b), and vectors of the radial velocity at Dv ¼ 15 lm (c). The solid point is the center of cross-section, and the dash line is
rv ¼ 0 lm, served as a reference point and a reference line, respectively.
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obvious enough. As Dv ¼ 10 lm, the RBC arrives to the summit at
t ¼ 4 ms, and to the outlet at t ¼ 7:9 ms. After that, it comes back
to the inlet, and to the summit again at t ¼ 11:8 ms. As
Dv ¼ 12 lm, the RBC arrives at the summit at t ¼ 2:5 and 7:3 ms
for the first and second rounds, and to the outlet at t ¼ 4:9 and
9:8 ms, respectively. As Dv ¼ 15 lm, it arrives at the summit at
t ¼ 1:45; 4:23 and 7:02 ms for the first, second and third times,
and to the outlet at t ¼ 2:8 and 5:66 ms for the first and second
times. The asphericity in the last three cases has the similar change
as the first case that a unimodal change is observed when the RBC
goes through every curved part. When two neighboring curved
parts are quite close, for example, the curved parts near the inlet
and outlet, two neighbouring unimodal changes make up a bimo-
dal one. In the last case with Dv ¼ 15 lm, this bimodal change is
the most obvious. In addition, the asphericity increases as the
diameter increases; in other words, the RBC is more squeezed in
a smaller microvessel, especially at Dv ¼ 8 lm. As the vessel diam-
eter increases, the repulsion from the microvessel becomes less
and less important. Hence, this increase of asphericity is not
observed when the diameter increases from 12 to 15 lm. The
information of the RBC motion can be found in Supplementary
Material. Fig. 10(a) shows the axial velocity profile on the cross-
section extracted at the microvessel summit, where it is almost
axisymmetric in all four cases, and increases as the microvessel
diameter increases. The Reynolds number and Dean number for
these cases are, Re ¼ 0:472;1:0;1:621;3:25, and
De ¼ 0:163;0:385;0:683;1:531, respectively. The secondary flow
appears in the microvessel with Dv ¼ 15 lm, as shown in Fig. 10
(b) and (c). However, the axial velocity is still axisymmetric. This
is because the curvature of the microvessel here is not large
enough to allow the fluid near the inner and outer walls experi-
ences sufficiently different friction forces. Taking an extreme case
for example, the axial velocity will be never skewed in a straight
tube no matter how large Re is. Hence, a conclusion is drawn that
the skewness of the axial velocity depends on the curvature of the
microvessel, except the viscous and inertial forces.
4. Conclusions

This study is undertaken to gain an understanding of the motion
and deformation of a RBC in a curved microvessel with a small
diameter of about 10 lm (comparable to a RBC diameter), in which
the Reynolds number is also quite small, of about 1:0. SDPD, a
particle-based method, is used to simulate the fluid flow because
of its great flexibility in handling complex structures, and IBM, a
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commonly used fluid-structure treatment method, is employed to
deal with the fluid-RBC interaction. We study the effects of curva-
ture, the type and the size of the microvessel on the motion and
deformation of RBC, as well as the associated flow pattern.

The simulation results show that the small curvature of the
microvessel has negligible effect on the RBC behavior and the flow
pattern. The flow structure is still dominated by a Poiseuille flow
without a secondary flow, and thus the RBC behavior is almost
the same as in a straight microvessel with an associated axisym-
metric and parachute deformation. When the curvature of the
microvessel is large enough, a secondary flow comes into being
with a pair of Dean vortices, and the axial velocity profile is skewed
toward the inner wall of the microvessel. The RBC is stretched dur-
ing the period leading to the peak of curvature, but shrinks rela-
tively during the subsequent period away from the peak
curvature. Thus, its asphericity has an obvious unimodal shape,
with an increase and then decrease, when it passes through a large
curvature part of the microvessel. In addition, it is found that a pair
of Dean vortices arise when De > 1, for example, in the arch
microvessel with Hc ¼ 50 lm or Dv ¼ 15 lm, and the U-bend
microvessel. This leads to the appearance of a secondary flow pat-
tern on the cross-section of the microvessel, associated with a pair
of Dean vortices. Finally, it is also observed that the axial velocity is
skewed toward the inner wall, i.e., the fluid close to the inner wall
flows faster than that close to the outer wall. This is contrary to the
fluid behavior in a large curved channel. This velocity skewness
depends on the friction forces from the inner and outer wall, as
well as the inertial forces. When the curvature of the microvessel
is large enough, the surface area of the inner wall is much smaller
than the outer wall, and thus the fluid experiences less friction
force from the inner wall than from the outer wall. At the same
time, if the inertial force is not much larger than the viscous force
(i.e., small Re), the flow velocity near the inner wall becomes faster
than that near the outer wall.
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